УДК 553.98.061.4(571.642) |
Особенности вещественного состава и физических свойств кремнистых и глинисто-кремнистых пород-коллекторов Окружного месторождения нефти (о. Сахалин)
А.И. ЮРОЧКО (НГО Сахалингеология)
Кремнистые породы широко распространены в осадочных бассейнах северной части Тихоокеанского подвижного пояса. Впервые их промышленная нефтегазоносность была установлена на месторождении Санта-Мария в Калифорнии, связанном с так называемыми кремнистыми сланцами формации монтерей миоценового возраста [10].
К подобным породам приурочено Окружное месторождение нефти на восточном побережье Сахалина. Основной продуктивный горизонт здесь - пиленгская свита миоценового возраста мощностью от 100 до 500 м и более, представленная тонким переслаиванием пелитоморфных кремнистых и глинисто-кремнистых пород с единичными маломощными прослоями туфов, песчаников и алевролитов. Продуктивные отложения перекрыты глинистыми породами борской свиты и образуют пластовую ловушку высотой около 600 м, которая практически до замка заполнена нефтью. Породы пиленгской свиты характеризуются интенсивной трещиноватостью ( рис. 1 ), благодаря чему в пределах столь мощной толщи существует единая гидродинамическая система. Трещиноватость пород определяет и их сравнительно хорошие фильтрационные свойства, о чем свидетельствуют результаты испытания скважин, в которых получены притоки нефти с дебитами до 156 т/сут.
Учитывая своеобразие и сложность строения рассматриваемых пород-коллекторов, их изучение возможно только при определении широкого круга разнообразных параметров и комплексном использовании полученных результатов. Так, при исследовании вещественного состава и физических свойств пород использовали: литолого-петрографический метод - 450 определений; силикатный анализ-145; рентгеноструктурный анализ-15; ИК-спектроскопию и дифрактометрию-10; абсолютную пористость- 525; открытую пористость, по методу Преображенского [3] - 652; абсолютную газопроницаемость матрицы на установке ГК-5 - 220; нефтенасыщенность прямым методом в аппаратах Закса [3] на образцах с естественным насыщением, отобранных из продуктивной части горизонта на растворе с нефтяной основой - 60; трещинные параметры (трещинные пористость и проницаемость, плотность трещин) в шлифах и аншлифах по методу ВНИГРИ [7] - 317. Привлекались также определения органического углерода - 220, люминесцентно-битуминологического анализа - 220, люминесцентной микроскопии - 31, электронной микроскопии- 14. Кроме того, были учтены результаты полевых работ по изучению трещиноватости в районах выхода пород на дневную поверхность, отдельные параметры, применяемые при подсчете запасов нефти и газа, и результаты опытно-методических работ, выполненных в центральной лаборатории ПГО Сахалингеология.
Основные компоненты кремнистых и глинисто-кремнистых пород - аутигенный кремнезем, глинистые минералы и обломочный материал, смешанные в различных пропорциях.
Обломочный материал представлен частицами мелкоалевритовой размерности, имеющими пирокластический и реже терригенный характер. Пирокластические обломки состоят из андезитов и плагиоклазов, терригенные - преимущественно из кварца. Содержание обломочного материала незначительно и редко превышает 20 %. Поскольку тип цементации базальный, наличие ограниченного объема обломочных частиц не оказывает никакого влияния на емкостно-фильтрационные свойства пород.
Глинистые минералы по результатам рентгеноструктурного анализа представлены гидрослюдой и смешаннослойным гидрослюдисто-монтмориллонитовым комплексом. Гидрослюда составляет наиболее крупные частицы пелитовой фракции; ее содержание не превышает 10 % от общего объема. Смешаннослойный гидрослюдисто-монтмориллонитовый комплекс, судя по широкому распространению его в прослоях витрокластических туфов, превращенных в бентонитовую глину, образовался вследствие разложения тонкой витрокластики. Содержание глинистых минералов варьирует в пределах 5-55%.
Кремнистый материал присутствует в виде опала, кристобалита, халцедона. По результатам дифрактометрии и ИК-спектроскопии. наиболее распространенной модификацией кремнезема является кристобалит. Все минералы кремнезема имеют форму глобулей ( рис. 2 ). Глобулярная структура кремнезема свидетельствует об его коагуляции и выпадении из растворов [2]. Однако наличие в породах скелетных остатков планктонных кремнеорганизмов, и в первую очередь полурастворенных опаловых панцирей диатомей, а также результаты исследований подобных пород формации монтерей [5, 10], Западной Камчатки [1] и юго-запада СССР [8] позволяют предполагать преимущественно органогенную первичную природу кремнезема. Постседиментационные преобразования биогенного кремнезема, по-видимому, происходили в такой последовательности: растворение скелетных форм кремнеорганизмов, перераспределение кремнезема в осадках, вторичное его осаждение, переход неустойчивых модификаций кремнезема в устойчивые [9]. Содержание свободного кремнезема изменяется от 35 до 85 %.
Помимо основных породообразующих компонентов в породах присутствуют новообразования пирита, кальцита, сидерита и глауконита, суммарное содержание которых редко достигает 10 %.
По соотношению кремнистого и глинистого материалов породы разделены на кремнистые и глинисто-кремнистые. К первым относятся разновидности, в которых кремнезем составляет более 55 % объема породы, ко вторым - менее 55 %. Граничное содержание кремнезема выбрано по уровню изменения внешнего облика пород и их физических свойств.
Среди кремнистых пород выделены опоковидные силициты (по внешнему сходству с опоками) и халцедонолиты. Опоковидные силициты представлены светло-серыми разностями и отличаются от халцедонолитов, имеющих самую разнообразную окраску, преимущественно модификацией кремнезема. В опоковидных силицитах преобладает кристобалит; в халцедонолитах присутствует халцедон с незначительной примесью менее устойчивых модификаций кремнезема.
Глинисто-кремнистые породы названы кремнистыми аргиллитами. Это темно-серые разновидности, содержащие кремнезем в виде кристобалита и частично опала. Резкое различие в окраске опоковидных силицитов и кремнистых аргиллитов обусловлено более высоким содержанием в последних глинистого материала.
Опоковидные силициты составляют около 50 % объема свиты, кремнистые аргиллиты - 35-40 %, халцедонолиты - 5-10 %. Породы ритмично переслаиваются, мощность отдельных прослоев 1-5 см.
Выделенные литотипы различаются как по вещественному составу, так и по физическим свойствам (см. таблицу ). Их особенностью является высокая трещиноватость. Наблюдаются тектонические и диагенетические трещины. Первые обособляются в три системы: одна проходит по напластованию; две другие образуют с трещинами первой двугранные углы 60-90°, а между собой - 45-82°. Плотность трещин систем примерно одинаковая и составляет 12-20/м, раскрытость их 1-3 мм и более. Среди диагенетических трещин выделяются две группы: первая характеризуется субпараллельной ориентировкой их относительно друг друга и слоистости; вторая представлена слабоизвилистыми трещинами типа сутурных швов, развитых под углами 45-70° к слоистости. Плотность открытых трещин этих групп 50-1050/м, раскрытость 5-55 мкм. Степень трещиноватости пород прямо зависит от содержания кремнезема и его преобладающей модификации ( рис. 3 , а).
Матрица пород практически непроницаемая, открытая пористость ее может достигать довольно значительных величин, что обусловлено своеобразной глобулярно-пластинчатой микроструктурой пелитовой составляющей. Исследования под электронным микроскопом показали, что свободный кремнезем выделяется в виде глобулей диаметром 0,8-4 мкм, беспорядочно рассеянных в породе или образующих крупные почковидные агрегаты - глобулиты (см. рис. 2 ). Глобули имеют правильную шарообразную форму с зачатками кристаллографической огранки. Интенсивность огранки возрастает по мере перехода опала в более устойчивые модификации и наиболее характерна для халцедона. Глобули кремнезема образуют жесткий каркас, полости которого рыхло заполнены пластинками глинистых минералов, ориентированных по наслоению. Описанная микроструктура характеризуется существенным незаполненным пространством, приуроченным преимущественно к участкам развития глобулей. Поры между ними имеют треугольную и четырехугольную форму, размеры их редко достигают 4 мкм. Объем порового пространства определяется числом глобулей и плотностью их упаковки. Наиболее крупные поры отмечаются в опоковидных силицитах (около 30 % пор диаметром 1-4 мкм, остальные меньше 1 мкм); в кремнистых аргиллитах и халцедонолитах их сечение не превышает 1 мкм. Последние отличаются высокой плотностью упаковки глобулей, обусловленной кристаллографической огранкой халцедона, в результате чего для этих пород уже не улавливается четкая зависимость открытой пористости матрицы от содержания кремнезема (см. рис. 3 , б). Между пластинками глинистых минералов развиты редкие щелевидные поры раскрытостью до 0,5 мкм, которые не оказывают заметного влияния на емкостные свойства. Однако данные поры, как и густая сеть диагенетических трещин, обеспечивают связь между участками развития глобулей, о чем может свидетельствовать незначительная разница между абсолютной и открытой пористостью, не превышающая 1-2 %.
Гидрофильность пород и наличие субкапиллярных и тонких капиллярных пор создают благоприятные условия для заполнения открытых пор матрицы только остаточной водой, не участвующей в фильтрации. Это подтвердилось при моделировании остаточной водонасыщенности методом центрифугирования [3], по результатам которого содержание воды составило 90-98 % от объема открытых пор. Иными словами, если бы первоначально породы были насыщены водой, то нефть не смогла бы проникнуть в поры матрицы и находилась бы только в трещинах. На самом же деле последующие прямые определения на образцах с естественным насыщением убедительно показали, что в матрице есть нефть и содержание ее доходит до 62 % объема пор (см. таблицу ). В результате изучения этого обстоятельства установлено, что при погружении образцов с естественным насыщением в модель пластовой воды происходит интенсивное вытеснение нефти ( рис. 4 ) за счет противоточной капиллярной пропитки образцов водой, обусловленной формированием остаточной воды, которую порода может удерживать, вследствие чего удаляется равноценный объем нефти. В лабораторных условиях этот процесс длился 3-4 сут. и в ряде случаев завершался полным замещением нефти водой (см. таблицу ). Количественная оценка вытесненного объема нефти проводилась по схеме: выбирали однородный образец с естественным насыщением, делили его на две части; на одной определяли первоначальную нефтенасыщенность прямым методом, другую помещали в модель пластовой воды и после завершения процесса противоточной капиллярной пропитки определяли прямым методом остаточную нефтенасыщенность. По полученным результатам рассчитывали коэффициент вытеснения - отношение замещенного объема нефти к первоначальному. Для кремнистых аргиллитов коэффициент вытеснения преимущественно равен единице (см. рис. 3 , г), для опоковидных силицитов он значительно ниже, что можно объяснить наличием в этих породах более крупных пор. В пластовых условиях процесс противоточной капиллярной пропитки должен протекать интенсивнее и полнее, чем в лабораторных, поскольку с повышением давления, температуры и увеличением насыщенности газами резко возрастает разница в поверхностном натяжении нефти и воды, о чем свидетельствуют результаты опытов [6]. В какой-то мере это подтверждают прямые замеры на образцах, отобранных из продуктивной части горизонта на обычном глинистом растворе, которые контактировали с ним в течение 12-24 ч (с момента выбуривания до консервации на устье). Остаточная нефтенасыщенность этих образцов, определенная прямым методом, составила всего 2-10% от объема пор, или 4-20% от первоначальной нефтенасыщенности. В условиях отсутствия фильтрации по матрице из-за перепада давлений столь существенное снижение нефтенасыщенности могло произойти преимущественно вследствие противоточной капиллярной пропитки вскрываемых пород водным фильтратом глинистого раствора.
По мнению некоторых исследователей [4], породы пиленгской свиты являются также и нефтематеринскими, основой ОВ которых послужили остатки отмерших диатомовых водорослей.
При люминесцентно-микроскопическом исследовании пород установлена равномерно рассеянная битуминозная текстура с различной цветовой характеристикой и интенсивностью свечения. Опоковидные силициты имеют более яркую люминесценцию и содержат более легкий битумоид, чем кремнистые аргиллиты. На контактах различных пород наблюдается перераспределение битумоидов с внедрением более легких в направлении пород с большим сечением пор. Поверхности стенок трещин люминесцируют в темно-бурых тонах без признаков вторичного битумоида. Однако вероятнее, что по трещинам мигрировал очень легкий битумоид, который к моменту исследований выветрился. Следовательно, можно говорить об общем направлении миграции битумоидов, происходящей от пород с меньшими размерами пор (кремнистые аргиллиты, халцедонолиты) к породам с более крупными порами (опоковидные силициты) и затем, видимо, к трещинам.
Подводя итоги вышеизложенного, можно сделать заключение.
Подобные кремнистые породы широко развиты в осадочных бассейнах северо-западного сектора Тихоокеанского подвижного пояса и образуют, как правило, весьма мощные массивные резервуары, надежно перекрытые глинистыми толщами. Принимая во внимание особенности этих пород, отмеченные на примере пиленгской свиты Окружного месторождения, с ними следует связывать перспективы нефтегазоносности региона.
СПИСОК ЛИТЕРАТУРЫ
Поступила 2/XII 1980 г.
Вещественный состав и петрофизические характеристики кремнистых и глинисто-кремнистых пород Окружного месторождения (по керну)
Название породы |
Содержание, % |
Плотность открытых трещин, 1/м |
Открытая пористость, % |
Абсолютная проницаемость, n*10-3 мкм2 |
Нефтенасыщенность по прямому методу, % |
Коэффициент вытеснения нефти водой |
||||
свободного кремнезема |
глинистых минералов |
обломочного материала |
матрицы |
трещинная |
матрицы |
трещинная |
||||
Опоковидные силициты |
57-80* |
10-35 |
5-10 |
128-1050 |
6-26 |
0,07-0,85 |
<0,01 |
7,40 |
31-62 |
1,0-0,15 |
72 |
20 |
6 |
460 |
16 |
0,37 |
19 |
45 |
0,25 |
||
Халцедонолиты |
72-85 |
5-30 |
0-10 |
50-709 |
8-25 |
0,09-0,34 |
<0,01 |
4-16 |
39-57 |
0,1-1,0 |
78 |
18 |
5 |
326 |
14 |
0,23 |
10 |
47 |
0,55 |
||
Кремнистые аргиллиты |
35-53 |
20-55 |
10-25 |
60-641 |
7-15 |
0,06-0,64 |
<0,01 |
3-38 |
17-60 |
1,0-0,98 |
44 |
38 |
17 |
265 |
10 |
0,23 |
13 |
38 |
0,99 |
*В числителе - пределы изменения, в знаменателе - среднее значение.
Рис. 1. Пришлифовка образца пород пиленгской свиты
Светлые разности - опоковидные силициты, темные - кремнистые аргиллиты
Рис. 2. Опоковидный силицит.
Сфотографирован с помощью сканирующего электронного микроскопа, x3000 раз. Шарообразные выделения - глобули кристобалита
Рис. 3. Основные зависимости между физическими свойствами пород и их вещественным составом
1 -опоковидные силициты; 2 - халцедонолиты; 3 - кремнистые аргиллиты
Рис. 4. Вытеснение нефти из образца с естественным насыщением при процессе противоточной капиллярной пропитки в лабораторных условиях.
Образец находится в стакане, заполненном моделью пластовой воды. Каплеобразные выделения - вытесненная нефть